留学主题咨询

立即预约
4人约过
¥210
小程序专享优惠价¥207  去小程序下单>>
微信扫码,立即下单

金融工程,数据科学,商业分析申请规划

专业介绍 商业分析 金融工程 数据科学
  • 课程简述: 纯技术角度剖析MFE,DS,BA申请方法,从根本提高自己硬实力。同时规划申请流程,方向和策略
  • 适用用户: 对于想申请MFE,DS,BA,或者转专业申请同学

1. 10分钟技术摸底,对学生技术背景迅速了解。

2. 挖掘兴趣和强项,规划申请策略以及申请准确方向,

3. 补充技术学习已经专业知识空缺,在申请季能够在硬实力不落人后

4. 介绍目前主流学校开设MFE,BA,DS申请侧重点,筹划申请方针

自我介绍

自我介绍

本科毕业于武汉大学计算机专业,专业排名前三。研究生就读于康奈尔大学金融工程,17fall申请季斩获Columbia University (FinMath, BA), Cornell University (Financial Engineering), Brown University (Data Science), New York University (Data Science).擅长技术与金融结合,对简历和文书修改擅长。对Technical和Behavioral面试有丰富经验。

教育经历

教育

Cornell

Master Financial Engineering
~

Wuhan University

Master Computer Science
~

经历

Co-Researcher

Wuhan University
~

Performed a deep analysis on a real dataset of NPinter and characterized the factors related to lncRNA sequences
Programmed and optimized algorithm named Linear neighborhood propagation in MATLAB
Researched on related algorithms and conducted benchmark comparison among those algorithms: RWR, LPBNI, CF
Applied cross-validation to assess the performance of Linear neighborhood propagation and achieved AUPR and AUC 0.42 and 0.91 respectively

Quantitative Researcher

Quant Asset Management
~

Utilized SQL Server to collect the stock factors and de-noised the raw data using Python
Developed Random Forest to predict stock trend with accuracy of 64%, and performed Stepwise Regression to optimized trading strategy and gained annual return over 25%

Quantitative Researcher

Changjiang Futures
~

Applied logistic regression classification & SVM to predict the ups and downs of 50ETF in MATLAB
Implemented Skew Volatility strategy to Soybean meal option in Python
Performed regression analysis on futures and options prices during a specified time period after market opening and before market closing, and conducted preliminary data processing using Excel pivot tables and functions in VBA
Utilized the Linear Neighborhood Propagation method to predict the ups and downs of 50ETF and transform this algorithm into trading strategy in MATLAB, back-tested strategy to evaluate their returns

获奖 & 荣誉

发表文章

服务评价

4.67
服务质量3 人评价
5星
71.4%
4星
28.6%
3星
0%
2星
0%
1星
0%

分享行家主题

Share to WeChat Share to Sina Weibo Share to Qzone Share to Douban Share to LinkedIn Share to Tencent QQ Share to Email App
有什么可以帮助您?
在线咨询
微信咨询
微信扫码,添加客服
×